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ABSTRACT

We show that memory-augmented Transformers (Memformers) can implement
linear first-order optimization methods such as conjugate gradient descent, momen-
tum methods, and more generally, methods that linearly combine past gradients.
Building on prior work that demonstrates how Transformers can simulate pre-
conditioned gradient descent, we provide theoretical and empirical evidence that
Memformers can learn more advanced optimization algorithms. Specifically, we
analyze how memory registers in Memformers store suitable intermediate attention
values allowing them to implement algorithms such as conjugate gradient. Our
results show that Memformers can efficiently learn these methods by training on
random linear regression tasks, even learning methods that outperform conjugate
gradient. This work extends our knowledge about the algorithmic capabilities of
Transformers, showing how they can learn complex optimization methods.

1 INTRODUCTION

In-context learning (ICL) allows large language models (LLMs) to generate contextually appropriate
outputs based solely on examples and queries provided in a prompt, without requiring any parameter
adjustments (Brown, 2020; Liu et al., 2021; Lu et al., 2021; Wei et al., 2022; Wu et al., 2022).
This remarkable ability has spurred research into understanding how Transformers can implement
algorithms (Achiam et al., 2023; Touvron et al., 2023), with recent studies focusing on their capability
to simulate optimization algorithms (Dai et al., 2022; Von Oswald et al., 2023a; Garg et al., 2022;
Akytirek et al., 2022). Transformers have been shown to implement gradient-based optimization
during their forward pass, such as preconditioned gradient descent for linear regression tasks (Dai
et al., 2022; Mahankali et al., 2023; Ahn et al., 2024).

More recently, studies have demonstrated that Transformers can learn even more advanced optimiza-
tion methods. For instance, Fu et al. (2023) showed that Transformers exhibit convergence rates
comparable to Iterative Newton’s Method, a higher-order optimization technique that converges expo-
nentially faster than gradient descent for in-context linear regression. Additionally, Vladymyrov et al.
(2024) proved that Transformers can, in fact, learn a variant of gradient descent that approximates
second-order methods, such as GD* ™, achieving convergence rates similar to Newton’s method.
These findings lead to the central question of our paper:

Can Transformers efficiently “learn” more advanced gradient-based optimization methods?

We aim to address this question by revealing some of the representational power of Transformers as
“algorithm learners,” further motivating the use of machine learning for discovering new optimization
algorithms. To make our investigation more precise, we focus on learning the class of gradient-based
algorithms obtained by linearly combining past gradients, known as Linear First-Order Methods
(LFOMs) (Goh, 2017), where the (k + 1)st iterate is

k
Wt = w4+ Y TEV f(w'), )
i=0
and where {T'¥}*_ are diagonal matrices. Model (1) is quite general, as it includes, as special cases,

standard methods such as gradient descent (GD), momentum GD, Nesterov’s accelerated gradient,
conjugate gradient, and in a stochastic setting, AdaGrad, ADAM, among others.
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By “learning” an algorithm like CGD or LFOM, we mean two key things:

1. The Memformer, in its forward pass, under certain internal parameter settings, can perform
iterations of CGD and/or LFOM. This means that its architecture and parameterization are sufficiently
expressive to execute these optimization methods as part of its computation.

2. The Memformer’s learnable parameters can be trained on linear regression tasks. When
using these learned parameters, which are shared across all in-context data samples in a batch,
the Memformer can execute “CGD-like” and “LFOM-like” iterations during a forward pass.
The surprising aspect lies in the Memformer’s ability to achieve competitive—and in some cases
even superior—performance compared to CGD, despite using a relatively small number of learned
parameters shared across all test samples drawn independently of the training data.

Our key insight for efficiently learning LFOMs is to leverage memory-augmented Transformers,
known as Memformers (Wu et al., 2020; Xu et al., 2021), which retain intermediate attention values
across layers. This memory enables Memformers to store past gradients, facilitating the execution of
advanced first-order methods such as conjugate gradient descent and momentum methods. The same
mechanism allows Memformers to implement more general LFOMs.

While unconditional learning of gradient methods remains out of reach, we build on related work
demonstrating that Transformers can learn gradient descent in the context of linear regression
tasks (Garg et al., 2022; Akyiirek et al., 2022; Von Oswald et al., 2023a; Ahn et al., 2024; Zhang
et al., 2024). Inspired by these findings, and extending the work of Ahn et al. (2024), we conduct
a theoretical analysis of the loss landscape for memory-augmented linear Transformers that omit
softmax activation (Schlag et al., 2021; Von Oswald et al., 2023a; Ahn et al., 2024).

In the Appendix, we also include our experiments that Memformers can outperform Nesterov
Accelerated Gradient (NAG) and momentum GD. In summary, our main contributions are as follows:

MAIN CONTRIBUTIONS

(1) Theoretical justification that Memformers can implement LFOM iterations, including
CGD. We provide a rigorous theoretical framework showing that Memformers, when trained
on linear regression tasks, can be configured to perform iterations of LFOMs in their forward
pass, encompassing advanced algorithms like CGD. By leveraging their memory mechanisms,
Memformers can store and effectively combine past gradients, enabling them to implement
these sophisticated optimization methods within their architecture.

(2) Empirical evidence of Memformers “learning’ optimization algorithms. Through ex-
tensive experiments, we demonstrate that Memformers can learn LFOMs, in a general sense,
by training on random linear regression tasks. Remarkably, a Memformer utilizing a shared
set of learned parameters is able to process batches of in-context data samples and perform
competitively with, and in some cases even outperform, the CGD (and NAG) algorithm that is
individually optimized for and run separately on each data sample in the test batch.

This finding is particularly surprising and significant because CGD tailors its optimization
individually for each data sample, whereas the Memformer applies a general optimization
strategy learned from the training data across all samples. The ability of Memformers to
generalize optimization strategies across data samples using shared parameters highlights
their generalization capabilities, which have not been fully recognized in prior research.

(3) Enhanced performance through multi-headed attention with theoretical insights. We
show empirically that multi-headed attention improves Memformers’ test performance and
offer a heuristic explanation for why increasing attention heads enhances loss performance on
test data.

Our main objective in this paper is to investigate the potential of memory-augmented Transformers
to learn advanced optimization algorithms in a general sense. We are not advocating for Trans-
Jormers as replacements for established optimization methods in practical applications. Instead,
we aim to shed light on the algorithmic capabilities of Transformers, inspiring further exploration
into how these architectures can learn and generalize complex algorithms. We believe our results
contribute to a deeper understanding of how augmented Transformers can facilitate optimization,
which may ultimately lead to the discovery of new and practical gradient-based algorithms.
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1.1 RELATED WORK

Research on Transformers is extremely active, and we cannot hope to fully capture the breadth of the
related literature. Below, we summarize the most immediately relevant topics.

In-Context Learning. The ability of Transformer models to perform in-context learning (ICL) has
been extensively studied since its introduction by Brown (2020). Subsequent works have explored how
these models adapt to new tasks without requiring parameter updates (Xie et al., 2021; Von Oswald
et al., 2023b; Hahn and Goyal, 2023; Liu et al., 2021; Lu et al., 2021; Wei et al., 2022; Wu et al.,
2022). This foundational research has paved the way for studies investigating how Transformers can
implement specific algorithms, such as gradient-based methods.

Gradient-Based Methods in Transformers. Garg et al. (2022) analyze the learning of gradient
descent within Transformers, particularly in the context of ICL for linear functions. Empirical studies
(Garg et al., 2022; Akyiirek et al., 2022; Von Oswald et al., 2023a) have shown that Transformers
can learn gradient descent after being trained on random linear regression tasks. Expanding on these
results, Von Oswald et al. (2023a); Ahn et al. (2024) demonstrate that Transformers can implement
preconditioned gradient descent for solving linear regression problems presented in input prompts.
Notably, these works—as well as ours—utilize Linear Transformers as discussed in (Schlag et al.,
2021; Von Oswald et al., 2023a; Ahn et al., 2023).

Higher-Order Optimization Methods in Transformers. Transformers have also been shown to
learn higher-order optimization techniques, such as Newton’s method, expanding their capabilities
beyond first-order methods (Fu et al., 2023; Giannou et al., 2024; Vladymyrov et al., 2024).

Memory-Augmented Transformers (Memformers). Memformers were introduced by Wu et al.
(2020); Xu et al. (2021). These models retain intermediate attention values across layers through
memory registers, enabling more complex computations and optimization methods to be learned.
While significant progress has been made in understanding how Transformers can learn gradient
descent, their potential for learning more sophisticated LFOMs remains largely unexplored. Our
work addresses this gap by showing how Memformers can efficiently implement a wide range of
advanced first-order and quasi-second-order optimization techniques, including CGD and momentum
methods, thereby pushing the boundaries of Transformer-based architectures.

2 BACKGROUND AND PROBLEM SETUP

2.1 LINEAR TRANSFORMERS ON RANDOM LINEAR REGRESSION

We follow the setup of training Transformers on random instances of linear regression, following the
prior works (Garg et al., 2022; Akyiirek et al., 2022; Von Oswald et al., 2023a; Ahn et al., 2024). We
largely use the notation and formal setup of (Ahn et al., 2024), which we now proceed to recall.

Data Distribution. Let x(i) € R? represent covariates drawn independently from a distribution Dx,
and let w* € R be drawn from Dy . The matrix of covariates X € R("*1)*? contains rows x ().

The responses are y = [(x(1),w™*),..., (x(n), w*)] € R™. Define the input matrix Z as:
x(1) x(2) - x(n) x(n+1) (d+1)x (n+1)
Zo = eR , 2
"T @) v oy 0 @

where the zero corresponds to the unknown response for x(n+1). The task is to predict (w*) " x(n+1)
using Zo. The training data consists of pairs (Z, (w*) Tx(n + 1)) for x(i) ~ Dx and w* ~ Dwy.

Self-Attention Without Softmax. We focus on the linear self-attention layer, building on (Schlag
et al., 2021; Von Oswald et al., 2023a). Let Z € R@+Dx(n+1) pe the input matrix of n + 1 tokens in
R?*1, Standard self-attention layer is defined as

Aty (Z) := W,ZM - smax(Z' W, W,Z), (3)

where W,,, W, W, € R(@H1)x(d+1) are weight matrices, and smax(-) denotes the column-wise
softmax. The masking matrix M ensures that the label for x(n + 1) is excluded is given by

M= [Iél 8:| c R(n+1)><(n+1). (4)
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Omitting softmax, the attention mechanism becomes

Attnp o(Z) := PZM(Z' QZ), 5)
where P = W, and Q = WJ W,. This simplified form, as shown in Ahn et al. (2024), can implement
preconditioned gradient descent, and it is the one we also use.

Transformer Architecture. As in the related work, we also simplify the Transformer to consider
only attention layers, using L layers of linear self-attention with a residual connection. Therefore, for
each layer ¢, the output is updated as

Ziyp1 =2+ %AttnPK’Ql{(Zf), (=0,1,...,L - 1. 6)
Using updates (6), with the input Z, the final transformer output is
TFL(Zo; {Pr, Qe}r ) = —1ZL)(d41),(ns1)- @)
The set of parameters { P, QZ}KL;(} is then learned by minimizing the following training objective:
F (P QeHEY) = By [(TFL(Z0) + (w) Tx(n +1))°]. ®)

Here, the scaling factor % is used only for ease of notation and does not influence the expressive
power of the Transformer.

We will utilize the following lemma from Ahn et al. (2024), which demonstrates that multi-layer
Transformers simulate preconditioned gradient descent under suitable parameterization. We have
provided the full proof of this Lemma 1 in the Appendix for completeness.

_ BZ = ded 0 o Az 0

Fe= { 0 10 Y=o o

Lemma 1 (Lemma 1, Ahn et al. (2024)). Consider an L-layer linear transformer parameterized
by Ag,...,Ap_1, asin (9). Let yen—H) be the (d+ 1,n + 1)-th entry of the {-th layer output, i.e.,

} , Ay By e R ©)

y"Y = [Zel @y iy for £ =1, L.
yénJrl) _ _<X(n+1) W%d>, (10)
where the sequence {W%d} is defined as w%d =0andfort=1,...,L—1:
Wil = Wi — AVRy- (W gd)7 (11)
with the empirical least-squares loss (with X := [x(l) . ,x(")} € R¥*n):
1
Ry (W) = HXTW XTw > = —(w—w") XX (w—w"). (12)
2n

2.2 LINEAR FIRST-ORDER METHODS

Linear First-Order Methods (LFOMs) (Goh, 2017) are a class of optimization algorithms that
lineary combine past gradients for minimizing smooth objective functions. They iteratively update a
parameter vector w using the gradient of the objective function. The general update rule is

whtt = w4+ o d¥, (13)

where qy, is the step size and d” is the update direction, typically related to the gradient V f(w*).
Algorithms within this family differ in how they compute d”* and choose a.

LFOMs can be expressed in a cumulative form. For gradient descent, unrolling (13) we get

k ,
k+1 __ 0 _ i
Wi =w —« E z.ZOVf(w), (14)
while common momentum methods need an additional term incorporating past gradients, yielding
k .
+1 _ 0 k 7
=wl )y AV, (15)

where the coefficients v¥ weight previous gradients. More advanced methods, or general LFOMs,
use diagonal matrices I'¥ to coordinate-wise scale each gradient component, i.e.,

1w +Z TEV f(w (16)
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Momentum Methods and Conjugate Gradient Descent (CGD) Momentum methods accelerate
convergence by incorporating a momentum term, modifying the gradient to account for past updates
and achieving faster convergence in relevant directions. Conjugate Gradient Descent (CGD), on the
other hand, is a first-order method optimized for quadratic minimization, serving as a benchmark
for large-scale, sparse linear systems. After an initial steepest descent, CGD generates directions
conjugate to previous ones, leading to faster convergence than standard gradient descent. Both are
core methods within the LFOM class, summarized below:

Momentum Methods Conjugate Gradient Descent (CGD)
1: Initialize wq, vo = 0 1: Initialize wo, s = —V f(wyq)
2: forn=1,2,... do 2: forn=1,2,... do
3: Compute the gradient: 3: Compute the steepest descent direc-
tion:
Vf(wn) Aw,, = =V f(wy,)
4: Update the velocity: 4: Compute the conjugacy coefficient:
Vi = Bvp_1 =0V f(Wy) IV f (W) |12
. In = \V4 2
5: Update the iterate: IV f(wn-1)l
Wil = Wn + Vi 5: Update the search direction:
6: end for Sn = AWy, + YnSp—1
7: [3: Momentum coefficient (controls the 6: Perform a line search:
influence of past gradients)
8: m: Learning rate (scales the gradient step oy, = argmin f(w,, + asy)
size) ¢

7: Update the iterate:
Wn4+1 = Wy + anSy
8: end for

Momentum methods provide fast convergence by accumulating gradient history and are widely used
in modern optimization. CGD converges in at most [V iterations for quadratic functions, where N is
the number of variables, and is effective for ill-conditioned problems.

3 MEMFORMERS CAN IMPLEMENT LFOMS IN-CONTEXT

Memformers can “learn” LFOMs in the specific sense discussed earlier in Section 1. Each layer ¢ of
the Memformer has learnable parameters such as Ay, B, (9), and ay, 7y, (18) or I'y (20).

Theoretically, in Propositions 1 and 2 below, we show that in their forward pass, under certain
parameter configurations, Memformers can implement exact CGD and LFOM iterations. This
is indicative of the algorithmic capacities of these architectures. In experiments, using a small
number of learned parameters that are shared across a batch of in-context test data samples,
the Memformer can then perform “CGD-like” (3.1) or “LFOM-like” (3.2) iterations that are
competitive with, and in some cases even outperform, CGD.

As noted in (Ahn et al., 2024, Subsection C.1), the term Attnp, g,(Z¢) in the update for Zy11 (6)
corresponds to the preconditioned gradient A,V Ry« (wfd) of the in-context loss (12) in the update
for w%il.

We will henceforth call the class of algorithms that the following architecture (18) can implement as
“CGD-like”, and the class of algorithms that architecture (20) can implement as “LFOM-like”.

3.1 DYNAMIC MEMORY FOR CGD-LIKE ALGORITHMS

Proposition 1. A memory-augmented Transformer can implement Conjugate Gradient Descent
(CGD,) in its forward pass through a dynamic memory mechanism that recursively refines search
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directions, where the update rules are:

R, = Attnp, g,(Z¢) + veRi—1, (17)
1
Loty =Z¢+ ar Ry, (18)
where 7y, and o control the influence of past updates and the step size, respectively.

Proof Sketch. Here R, denotes the state of a single memory register R at different layers ¢ during a
forward pass. CGD refines search directions using current gradients and previous directions. The
Transformer simulates this by using Attnp, g,(Z) as the current update, analogous to the gradient
in CGD, and ~,R,_; to refine the previous search direction, corresponding to the recursive update of
s, in CGD.

The recursive update for R, thus mimics s,,, the search direction in CGD. The update for Z, 1 uses
Ry, scaled by ay, similar to how CGD iterates are updated using s,,. With A, = I, this process
matches CGD applied to the loss Ry« (w) (12), using both current and previous gradients to refine
the search direction. (A full proof of Proposition 1 is provided in Appendix A.) O

3.2 IMPLEMENTING k STEPS OF LFOM WITH MEMORY REGISTERS

We extend our analysis to show how Transformers can simulate k steps of Linear First-Order Methods
(LFOMs). This is achieved by maintaining a memory register at each layer, which stores accumulated
updates from previous layers, simulating iterative optimization.

Proposition 2. A memory-augmented Transformer can implement k steps of LFOM in its forward
pass by maintaining memory registers across layers, where the update rules are:

R, = Attnp[,QZ (25)7 (19)
4
1 L
Zoy1 = Zo + Ez;)rj ® Ry, (20)
]:

where F? governs the contribution of previous layers, and © is the Hadamard product for scaling.

Proof Sketch. Here each R, denotes a separate memory register for each layer /. Memformers with
this architecture simulate iterative optimization by refreshing the memory register R, at each layer
with Attnp, o,(Z¢), capturing the current update. The cumulative update to Z,1 incorporates past
layers through a weighted sum of previous memory registers R ;, with weights ' € R(d+1)x(n+1)
mimicking LFOM’s cumulative iterative process. We will henceforth refer to this architecture (20) as
“LFOM Memformer”.

The Hadamard product ® modulates the influence of R ;, analogous to gradient preconditioning. This

setup subsumes the case of diagonal preconditioners A¥ acting on gradients V Ry, (wlgd), which in
the general form looks like:

k
Wi =wo+ > AFVR,- (w8, Q1)
=0

The matrices I‘? € R@+x(n+1) gp4 Af € R4*4 serve similar roles, but their dimensions differ.
We expect this Hadamard product memory architecture to be able to perform richer algorithms than
LFOMs, though a formal characterization of its full potential remains to be done.

The full proof follows from the cumulative memory structure and the connection between attention and
preconditioned gradients, as discussed in the proof steps of Lemma 1. (A full proof of Proposition 2
is provided in Appendix A.) O

Remark. The update (20) could be interpreted as a type of gated memory, related to gating in LSTMs
and GRUs that also use the Hadamard product to modulate information flow through gates. This
similarity suggests that principles from these architectures could help refine memory mechanisms in
Transformers, potentially enhancing their ability to handle long-term dependencies in optimization
tasks. However, further exploration is needed to fully understand this relationship.
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3.3 EXPERIMENTAL RESULTS: MEMFORMER PERFORMANCE VS. CGD

In this section, we present our empirical results for Memformers “learning” conjugate gradient descent
(CGD), general linear first-order methods (LFOMs), and general LFOMs with GD™ . The method
GD™ is a quasi-Newton method where the inverse Hessian in Newton’s method is approximated by
a truncated Neumann series; for more details on GD ™, refer to Section A.10 of Von Oswald et al.
(2023a).

We consider the in-context loss function (12) for linear regression. The input dimension is set to
d = 5, and the number of training observations in the prompt is n = 20. Both the inputs x(*
and the target weight vector w* are sampled from Gaussian distributions: x(¥ ~ N(0, 3) and
w* ~ N(0,271), where ¥ = UTDU. Here, U is a uniformly random orthogonal matrix, and D
is a fixed diagonal matrix with entries diag(1,1,1/2,1/4,1).

We optimize the function f (8) for a three-layer linear transformer using the ADAM optimizer. The
matrices Ay, A1, and A (as in (9)) are initialized with independent and identically distributed (i.i.d.)
Gaussian entries. Each gradient step is computed using a batch of size 1000, and we resample the
batch every 100 steps. We clip the gradient of each matrix to have a maximum norm of 0.01. All
plots are averaged over five runs, each with a different randomly sampled U (and thus different 32).

Figure 1 illustrates the implementation of a CGD-like algorithm under the architecture given by (18).
In Figure 1a, the line-search parameters cy and deflection parameters -, for each layer ¢ are obtained
by training using ADAM. By “CGD-like,” we mean that upon training the Memformer using ADAM,
the Memformer layers learn general parameters o, and 7, which, while they may not match the
exact CGD parameters for individual observations, perform well enough on each observation to be
comparable to, if not competitive with, CGD. We further explain the important issue of learning
general parameters in Section 4.

Figure 1b presents the same experiment as Figure 1a, using the architecture in (18), but with the
parameters A, for each layer not restricted to scalars. Thus, past gradients are accounted for, similar
to CGD, but with preconditioners A,. This is therefore not a “CGD-like” algorithm. We aim
to demonstrate that once we allow preconditioned gradients, a Memformer implements a certain
“LFOM-like” algorithm that distinctly outperforms CGD.

Figure 2 presents the performance of LFOM Memformer under the architecture in (20), where the
matrix parameters I'; for each layer j are obtained by training using ADAM. In our experiments,
we consider the special case of Ff = I'; V¢, which is more natural, if we consider that each layer
j of the Memformer has an associated I';. Figure 2a shows the results on non-isotropic data, and
Figure 2b shows the results on isotropic data. Note that this algorithm is quite similar in nature to the
previous case in Figure 1b. Here, the I';’s essentially act as preconditioners of the gradients computed
in each layer. Consequently, the graphs of Figures 1b and 2a are nearly identical. In the isotropic
data experiment (Figure 2b), we observe that the Memformer does not perform better than a linear
transformer. In quadratics with isotropic data, there is no significant variation in curvature across
directions; thus, incorporating past gradients via momentum offers little advantage. Momentum is
more beneficial in cases with non-isotropic data.

Figure 3 presents LFOM Memformer with GD™ under the architecture in (20), where the B, blocks
in the P, matrices for each layer ¢ (9) are allowed to be non-zero. Once again, the matrix parameters
for each layer ¢ are obtained by training using ADAM. In this case, the B, matrices resemble a
heavily truncated Neumann series of the inverse XX T (Hessian of (12)), resulting in a quasi-Newton
method. The experiments are conducted on both non-isotropic data (Figure 3a) and isotropic data
(Figure 3b).

4 EXPERIMENTS: INFLUENCE OF BATCH SIZE ON PERFORMANCE

We emphasize here that the results presented in Section 3.3 compare the performance of Transformers
and Memformers (which learn shared generic parameters upon training) against CGD that runs on
fresh observations of batch size B = 1000, independently resampled from the same distribution. But
unlike CGD that computes specific parameters for each observation, the Transformer and Memformer
models learn shared parameters Py, @, (and «y, ¢, or I'y) for each layer ¢, and these parameters are
applied uniformly across all 1000 observations in the batch. In contrast, CGD is executed individually
on each of the 1000 observations in the batch, and the average log-loss versus layers is plotted.



Under review as a conference paper at ICLR 2025

NG Conjugate Gradient Descent
—— Memformer with CGD
—— Linear Transformer

log(Loss)
II—‘ <I3 o o
? g ? T
log(Loss)
II—I CI> o o
S v 2 b

—— Conjugate Gradient Descent —1.54
—— Memformer with CGD \
154 — Linear Transformer —2.0-
1 2 3 4 1 2 3 4
Number of Layers/Steps Number of Layers/Steps
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Figure 1: Comparison of Linear Transformer and CGD Memformer (18) with general CGD-like
parameters to actual CGD running separately on each test observation.
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Number of Layers/Steps Number of Layers/Steps
(a) Non-Isotropic Data (b) Isotropic Data

Figure 2: LFOM Memformer (20) performance on non-isotropic vs. isotropic test data (Pre = with
non-trivial preconditioners). Test data is independently sampled from the same distribution as the
training data.

The strength of LFOM Memformers (20) (with matrices I'y restricted to scalar multiples of the
identity) becomes even more pronounced when tested on training data with small batch sizes, such
as B = 1 and B = 10. In these scenarios, the Memformers learn parameters that significantly
outperform CGD running in parallel on each of the observations in those small batches. Figure 4
demonstrates this comparison. We further provide an experimental comparison of LFOM Memformer
performance vs. Nesterov Accelerated Gradient Method and Momentum GD in the Appendix.

5 EXPERIMENTS: IMPACT OF USING MULTI-HEADED ATTENTION

Our experiments show that increasing the number of attention heads improves test loss performance.
Multi-head attention enables Transformers to learn diverse preconditioning matrices, better adapting
to varying data covariance structures. In our architecture (17), attention values from each head
are summed into the memory register Ry at each layer. Heuristically, each head captures different
aspects of the data, estimating gradients from multiple perspectives. This ensemble-like behavior
reduces variance in gradient updates by averaging out individual noise and biases, leading to faster



Under review as a conference paper at ICLR 2025

0.5- 07
0.0+ -1
—~—0.54 —_—2-
0 %]
3 3
2 -1.0- 2-3-
o o
o o
-1.5- _4-
=2.04 __ Conjugate Gradient Descent  ~ —5- —— Conjugate Gradient Descent
—— Linear Transformer (Pre) GD++ —— Linear Transformer (Pre) GD++
—2.57 LFOM Memformer with GD++ —6- —— LFOM Memformer with GD++
T T T T T T T T
1 2 3 4 1 2 3 4
Number of Layers/Steps Number of Layers/Steps
(a) Non-Isotropic Data (b) Isotropic Data

Figure 3: LFOM Memformer (20) GD++ performance on non-isotropic vs. isotropic test data (Pre =
with non-trivial preconditioners). Test data is independently sampled from the same distribution as
the training data.
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~25- ~2.0-
-30- —2.24
1 2 3 4 1 2 3 4
Number of Layers/Steps Number of Layers/Steps
(a) Batch Size B =1 (b) Batch Size B = 10

Figure 4: LFOM Memformer (20) with scalar preconditioners I'y vs. CGD performance on small

batch training data (B = 1 and B = 10). The Memformer demonstrates superior performance on the
training data.

convergence and more stable optimization. Acting as implicit regularization, it prevents overfitting
and enhances generalization on test data. This phenomenon is also supported by recent studies. Chen
et al. (2024) showed that multi-head attention is essential for effective context preprocessing in sparse
linear regression, aligning with our findings. Similarly, Cui et al. (2024) provided theoretical and
empirical evidence that multi-head attention outperforms single-head attention in in-context learning.

Figure 5 compares models with 1-head and 5-head attention, illustrating the benefits of multiple
heads on convergence speed and test loss performance.

6 DISCUSSION AND FUTURE WORK

This work demonstrates the capability of memory-augmented Transformers (Memformers) to im-
plement a broad range of first-order optimization methods, opening several research directions. We
briefly comment on some of these aspects below.
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Figure 5: Comparison of LFOM Memformer (20) (with scalar preconditioners I'y) performance using
1-head and 5-head attention, relative to CGD.

(i) Architectural Flexibility: Small modifications, such as (gated) memory registers, significantly
enhance Transformers’ ability to learn and implement diverse optimization algorithms. Future
research could explore further architectural innovations to unlock even greater capabilities.

(i) General Function Classes: While our approach successfully makes Transformers implement
LFOMs on quadratic functions, future work should extend this to more general objective func-
tions. Doing so may require novel training strategies, and possibly architectural adjustments to
handle non-quadratic functions. The role of nonlinear attention and the MLP component of
Transformers may also prove to be useful here.

(iii) Efficiency vs. Generalization: Attention-based methods require more computation than
directly implementing conjugate gradient descent or momentum GD. However, Transformers
excel in learning general parameters, enabling LFOMs to generalize across new data without
needing per-instance optimization. Exploring practical use of such “learned optimizers” to
either warmstart a solver, or to potentially even bypass it, is a tantalizing research topic.

(iv) Theoretical Foundations and Convergence Analysis: Strengthening the theoretical basis of
Transformers’ optimization capabilities, including convergence analysis and their alignment
with classical optimization theory, is another important direction for future research.

(v) Meta-learning and Transfer Learning: The ability of Transformers to learn and general-
ize optimization algorithms offers exciting potential for meta-learning and transfer learning,
providing new opportunities in areas where traditional optimization methods fall short.

6.1 LIMITATIONS

We briefly remark on some limitations of our current framework. For instance, while Memformers are
quite versatile, our experiments (Figures 1, 2) indicate they do not radically outperform preconditioned
GD on general quadratic problems as in (12), where the preconditioner matrix I'; (and likewise, Ay)
for the current layer £ is the main contributor to loss performance at each update step £ (17). On the
other hand, this behavior is likely due to the task being quadratic, and a future study that tackles more
general ICL formulations will likely shed light here.

Transformers can implement second-order methods like Newton’s method (Fu et al., 2023; Giannou
et al., 2024), which typically outperform LFOMs in convergence speed and accuracy. However, we
reiterate that the main focus of our paper is to explore the space of first-order optimization algorithms
that augmented Transformers can learn, as opposed to looking for “the best” algorithm.

10
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7 REPRODUCIBILITY STATEMENT

We believe the following points provide a clear path for replicating our results:

* Code Availability: The code for our experiments, including Memformers and
LFOM implementations, is available at ht tps://anonymous.4open.science/r/
ICLR-2025-Memformer_LFOM.

* Experiment Setup: Detailed descriptions of the training setup, model architecture, parame-
ter initialization, and optimization methods are included in Sections 2 and 3.3.

* Random Seeds: Random seeds were fixed across all experiments to ensure consistency, and
they are provided in the code repository for replication.

* Hardware Requirements: All experiments were conducted on NVIDIA T4 GPUs in
Google Colab.
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SUPPLEMENTARY MATERIAL

A PROOFS

A.1 PROOF OF LEMMA 1: EQUIVALENCE TO PRECONDITIONED GRADIENT DESCENT

This proof already exists in the literature, for instance, in Subsection C.1 of Ahn et al. (2024).
However, we repeat it here, to make this paper as self-contained as possible.

Consider a set of fixed samples x(1) ..., x(") along with a fixed vector w*. Let P = {P;}%_, and
Q = {Q;}r_, represent fixed weights, and let Z; evolve as per equation (6). Define X; as the first

d rows of Zj, (under equation (9), we have X; = X, for all i), and let Y; be the (d + 1)-th row of

Z;. Now, let g(x,y, k) : R x R x Z — R be a function such that for x,,,; = x and yf:ﬁl =y, the

function is defined as g(x,y, k) := yﬁﬁzl. It’s worth noting that yflll = [Yi]n+t1.

We can verify that, under equation (9), the update rule for ygﬁl is given by:

1
Yo=Y, — EY;CMXJ ApXo, (22)
where M is a mask matrix of the form:
L 0
M= [O 0} .

The following points can be verified:

1. g(x,y,k) = g(x,0,k) +y. To see this, note that for each i € {1,...,n}, we have:

; ; 1 n ) . )
y&, =y® - Sy T 4x @y,
j=1

Thus, y,’ () does not depend on yi}rl for any ¢. For ygi)l, the update becomes:

=3 = L Ayl

which clearly shows that the dependence on yiﬁal is additive. Through a simple induction, we can

establish:
g(x,y,k+1) -y =g(x,y,k) —y.

2. The function g(x, 0, k) is linear in x. To see this, note that for j # n + 1, y(k) does not depend on
fw)ﬂ for any t, j, or k. Therefore, the update for yi +11) depends linearly on x,,+1 and yfl 421 Since

ys)ll = 0 s linear in x, we conclude by induction that the result holds.

Considering these points, we can confirm that for each k, there exists a vector 6, € R such that:
9(x,y,k) = 9(x,0,k) +y = (0, x) +,

for all x and y. It follows that g(x,y,0) =y, so that (fy, x) = g(x,y,0) —y = 0, implying 6y = 0.

We now focus on the third key fact: for each ¢, we have:
gy k) =y = (00, x7) +y .

To prove this, let x,, 1 := x(*) for some i € {1,...,n}. Then:

n

[ 1 i j
vl =y - = Z OT ApxDy ),

:
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k+1 k IR e
Y;H )= Y£LJ£1 “n ZXIHAICX(J)Y/?)»
j=1
therefore, y,(fll = ygfll) when y,(f) = yg:)l. This completes the induction, given that y((f) = yfloll
by definition.

Let X € R%*™ be the matrix whose columns are x(1), ..., x(") excluding x,,;1, and let Y, € R *"
be the vector of y'", ...y It follows that:
Y=Y, +6, X

Using this, the update formula for ygﬁl becomes:

1 e
yF =y ™ (AT %), (23)
leading to the update:
1 _ _
(Ors1,%Xns1) = Ok, Xpny1) — E<AkX(XT9k +Yo), Xnt1)- 24)

Since x,,11 is arbitrary, we derive the general update formula:
1 - —
Ops1 = O — ﬁAkXXT(ek +w"). (25)

Treating Ay, as a preconditioner, and letting f(6) := 5-(6 + w*) " XX (6 + w*), we can express
the update as:

1
O = O — ~ ALV (0). (26)

Finally, let wid := —0). We can verify that f(—w) = Ry~ (w), implying that:
1
Wid+1 =wi— EAkVRW*(Wid). (27)
We also confirm that for any x,, ;, the prediction of ygﬁl is:
9(Xnt1, Y41, k) = Yni1 — (0, Xn41) = Yng1 + <W§d7xn+1>-

This concludes the proof. We have simply followed the update rule (6) to its logical conclusion.

A.2 FULL PROOF OF PROPOSITION 1

A memory-augmented Transformer can implement Conjugate Gradient Descent (CGD) through a
dynamic memory mechanism that recursively refines search directions, where the update rules are:

R, = Attnp, g,(Z¢) + veRi-1, (28)
1
Zoyy =2+ ﬁRz, (29)
where vy and oy control past update influence and step size.
PROOF

Our goal is to demonstrate that, under appropriate parameter configurations, the memory-augmented
Transformer updates given by equations (28) and (29) correspond precisely to the Conjugate Gradient
Descent (CGD) algorithm when applied to the quadratic loss function:

Ry~ (W) = %(W —w) XX (w —w"). (30)

We will establish a mapping between the Transformer’s operations and the steps of the CGD algorithm,
demonstrating that the Transformer can implement CGD under certain parameter settings.

CGD ALGORITHM FOR QUADRATIC FUNCTIONS

For minimizing a quadratic function, the CGD algorithm proceeds as follows:

14
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Algorithm. Conjugate Gradient Descent (CGD)

Initialize wg and ro = —V f(wy), Sg = ro
Wi = Wg + I'g
forn=1,2,... do
Compute the residual: r,, = —V f(w,,)
Compute the conjugacy coefficient:

T

r n

rTL
Tn =
r;q,r_lrn—l
Update the search direction:

Sp =Tp + VYnSn—1
Compute the step size:

r)r,

s, Hs,

Ay =

Update the parameters:
Wntl1 = Wp + Sy

end for

MAPPING CGD UPDATES TO TRANSFORMER UPDATES

We first recall that in the proof of Lemma 1 (A.1), the Wf:_l update rule
1
wit) = wi' = AV Ry (wi), 31)
is a direct downstream consequence of the Zy.; update rule (6)
1
Zoyi = Zg—I-fAttnthg(Zg), (=0,1,...,L—1, 32)
n

under the parameterization given in equation (9). Thus, the Attnp, g, term in the Z, update equation

is, in a precise sense, paralleled by the —%AkVRW* (Wid) term in the Wi‘il update equation (31).

STEP 1: INITIALIZATION

* CGD:
Wo given, ro = —Vf(Wo), Sp = I'g.
* Transformer:
— The initial state Zg in (6) parallels wq in (31).
— The memory register R is initialized to Attnp, g, (Zo), i-e., Ry = Attnp, g,(Zo),
corresponding to s = rg.
— We set 79 = 0, consistent with CGD initialization.

STEP 2: UPDATE MEMORY REGISTER (SEARCH DIRECTION)
* Transformer Memory Update:
Ry = Attnp, g, (Z¢) + veRe—1.

* Correspondence with CGD:
Sp =Tpn + TnSn—1-

Identifying Ry <> s,, 7¢ = vn, and Ry_1 < s,,_1, the Transformer’s memory update
matches CGD.

STEP 3: UPDATE PARAMETERS

¢ Transformer Parameter Update:

1
Zop1=2Zp+ 045ng~
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¢ Correspondence with CGD:
Wnt1 = Wy + Sy

The scaling factor % accounts for the gradient’s scaling, consistent with the CGD update
when considering the Hessian H = %XXT.

STEP 4: CONJUGACY COEFFICIENT 7y AND STEP SIZE oy

* CGD Computations: Scalar values computed based on residuals and the Hessian.
* Transformer Implementation:

— ¢ and oy are treated as parameters, ensuring structural correspondence.
— The Transformer’s architecture allows these as fixed or learnable parameters.

Therefore, under suitable parameter configurations, the memory-augmented Transformer can imple-

ment CGD, demonstrating the feasibility of using the Transformer’s architecture to perform CGD-like
updates.

A.3 FULL PROOF OF PROPOSITION 2

A memory-augmented Transformer can implement k steps of Linear First-Order Methods (LFOMs)
by maintaining memory registers across layers, where the update rules are:

R, = AttnPZ,QZ(Zg), (33)
1 4
£
Zevr=Zo+ zg)rj ® Ry, (34)
]:

where F? governs the contribution of previous layers, and © is the Hadamard (element-wise) product
for scaling.

Our goal is to show that the memory-augmented Transformer with updates given by equations (33)
and (34) can implement k steps of an LFOM, whose general formulation is:

k
Wi = w0 4 3 ARV (W),
i=0
where A¥ are diagonal matrices that scale the gradients V f (w?).
We will proceed by establishing a correspondence between the variables and updates in the memory-

augmented Transformer and those in the LFOM, and by showing that, under appropriate parameter
settings, the Transformer updates replicate the LFOM updates.

The first order of business is to realize that, in the proof of Lemma 1 (A.1), the Wiil update rule (31)
is a direct downstream consequence of the Z, 1 update rule (6), under the parameterization given in
equation (9).

Set Ry = Attnp, g,(Z¢) per (33). Then the consequence of the Z,,1 = Z; + %Zﬁzo I ©R;
update rule is that each Attnp, o, (Z;) is coordinate-wise scaled by Iy € RV (n+1) Byt if
Attn P;,Q; (Zj) is coordinate-wise scaled by T'¢, then the Y ;.11 update rule in (22) now instead looks
like Yypp1 =Y, — & ok F’?|d+1 © (YeMX{ AxXo), where T'¥ denotes the (d + 1)-th row

j=0"7J |d+1
of I‘f This is because, by definition, Y is the (d 4 1)-th row of Z; (A.1).
From the basic Y, update rule in (22), the update formula for yfﬁﬂl) in (23) follows as a consequence.
Except that now, this update formula will include a coordinate-wise scaling as well, which we will
denote by A.’; € R%:

k
k+1 k 1 TG
v =y - - D ((AXTY)) 0 AF, xup1),
3=0
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which in turn leads to 641 = 60 — 2 f:O(Aj)_Q_(T(Gj + w*)) ©® A¥ in place of (25) and

ws = w15 A TR (W) © A in place of (26). The negative signs can, of course, be
k+1 k n 7j=0-*%J J 7 p g g

incorporated within the As.

RdXd

If we simply rewrite A? € R as a diagonal matrix in , this setup then subsumes the case of

diagonal preconditioners A? € R%*4 acting on the gradients V R~ (w?d), which in the general form
looks like:
k
WL =Wo+ > AFVRy-(wh?). (35)
i=0

where A¥ are diagonal matrices.

Note. The memory-augmented Transformer performs exactly these updates in the special case when
the preconditioners A; are scalar multiples of the identity. If the preconditioners A; are non-trivial,
then this architecture performs “LFOM-like” algorithms that lie in a class richer than LFOMs (3.2).

B COMPARISON TO NESTEROV ACCELERATED GRADIENT METHOD (NAG)
AND MOMENTUM GRADIENT DESCENT (MGD)

B.1 NESTEROV ACCELERATED GRADIENT METHOD (NAG)

NAG is a commonly used optimization technique that builds on classical gradient descent by incorpo-
rating a momentum term that anticipates the next update. Specifically, the weights are updated using
the following update rules:

Vit1 = Wi + Bu(Wr — Wi—1)

Wit1 = Vit1 — N6V (Vet1)

Here, [y controls the influence of previous updates (momentum), and 7y, is the learning rate. In our
experiments, we selected 7, = 0.03 and [, = 0.9 after testing various values of these parameters
on the given distribution, as in Section 3.3. These values provided the best performance. The
momentum term allows NAG to “look ahead” in the optimization trajectory, which often leads to
faster convergence than vanilla gradient descent.

B.2 MOMENTUM GRADIENT DESCENT (MGD)

Momentum Gradient Descent operates similarly to NAG but without the anticipation of future steps.
The algorithm updates the weights based on a momentum term that accelerates convergence in
directions with consistent gradients. The update rule for MGD is given by:

Vit1 = Bevie — eV f (W)

Wil = Wi + Vi1

In our experiments, the learning rate 7, = 0.005 and momentum parameter 55 = 0.9 provided the
best results on the given distribution, as in Section 3.3. Momentum helps to mitigate oscillations in
directions with high curvature, stabilizing the optimization trajectory and leading to faster convergence
compared to gradient descent.

B.3 MEMFORMERS VS. NAG AND MGD

In our experiments, we observed that Memformers (20) outperform both NAG and MGD on non-
isotropic data. Figures 6a and 6b compare the performance of Memformer with NAG and MGD,
respectively, on the same non-isotropic data. As shown, the Memformer achieves faster convergence
and much better loss performance compared to both algorithms.
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Figure 6: Comparison of Nesterov Accelerated Gradient Method (left) and Momentum Gradient
Descent (right) vs. LFOM Memformer on non-isotropic data.

C MEMFORMER EXPERIMENTS WITH MORE THAN 4 LAYERS

In our experiments, we observed that Memformers with more than 4 layers continue to demonstrate
impressive performance in learning optimization strategies. We conducted experiments with Mem-
formers having up to 7 layers and dimension d = 10. Training beyond this point becomes impractical
due to extensive iteration requirements and significant convergence times, which can span several
hours. This limitation is a consequence of computational constraints (e.g., available GPUs) rather
than any inherent deficiency of the Memformer architecture itself.

Here, d refers to the rank of the square matrix XX in the empirical loss quadratic as described in
Equation 12.

1. Experiment 7a (Dimension d = 5, Layers = 5): As expected, Conjugate Gradient Descent
(CGD) converges within d steps due to the dimensionality constraint. Remarkably, even though the
Memformer only learns general parameters A, (Equation 9) and I'; (Equation 20), it manages to
keep up with CGD for up to 4 steps, showcasing its efficiency.

2. Experiment 7b (Dimension d = 10, Layers = 7): In this case, CGD does not converge until
beyond 7 steps, which aligns with theoretical expectations. Nevertheless, the Memformer remains
highly competitive, matching CGD’s performance for 6 steps and even performing comparably at
7 steps. This demonstrates the Memformer’s robust generalization capabilities, even under more
complex conditions.

D EXPERIMENT ON CONVERGENCE VERIFICATION FOR MEMFORMER
PARAMETER A, TO X

Our strategy to train the Memformer (20) was to first train the A,’s (9) in each layer ¢ on the training
batch and then to “fine-tune” the I'y’s on the training batch. Therefore, we present here an empirical
verification of our results per Theorem 3 in Ahn et al. (2024).

Theorem 3. (Ahn et al. (2024)) Assume that 29 ™ N(0,%) and wy, ~ N(0,57Y), fori =1,...,n,
and for some Y. - 0. Consider the optimization of in-context loss (8) for a k-layer transformer with
the parameter configuration in Eq. (9) given by:

min f(A).

{Aﬂ }£=_01
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Figure 7: Performance comparison of Memformers with CGD for various dimensions and layer
configurations.

Let S C REXIXd pe defined as follows: A € S if and only if for all i = 0,...,L — 1, there exist
scalars a; € R such that A; = ;X ". Then

L—1
inf Va,f(A B)|% =0,
(A,lf%)es;” 4, f(A,B)|%

where V 4, f denotes the derivative with respect to the Frobenius norm || A;|| p.

We evaluated the in-context learning (ICL) loss for linear regression with d = 5 and n = 20, where
2 ~ N(0,%) and w, ~ N(0,X~1). The covariance ¥ was generated as . = U7 DU, with U
being a random orthogonal matrix and D = diag(1,1,1/4,1/16,1). A three-layer linear transformer
was trained using ADAM, with Ag, Ay, Ao initialized as i.i.d. Gaussian matrices. Each gradient
step used minibatches of size 20,000, resampled every 100 steps, and gradients were clipped to 0.01.
Results were averaged over 5 runs with independent U and X samples.

To measure convergence, we computed the normalized Frobenius norm distance:

d
) . IM —al||F 1 .
Dist(M,I) := min —————, «:= — E MTi, 1],

o |M]| F d =

which quantifies the deviation of M /|| M || from a scaled identity. The distance Dist(X'/2A; %1/, T),
averaged over 5 runs, is shown in Figures 8a, 8b, and 8c as a function of training iterations.
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Figure 8: Convergence of X1/24;51/2 to the scaled identity matrix for each i, as predicted by
Theorem 3 of Ahn et al. (2024).
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